Contents:

1	Scope of application
2	Remarks about utilisation
3	Calculation example
4	Appendix: Drawings

Remarks: In order to keep the calculation example in compliance with the DVS 2210-1 technical code, the designations in Section 4 and the corresponding preceding numbers have been completely incorporated into the supplement. The following overview shows the contents and systematic structure of the calculation example.

4.1	Hydraulic calculations
4.1.1	Determining the clear pipe diameter
4.1.2	Establishing the flow rate
4.1.3	Characteristic hydraulic values
4.1.4	Establishing the hydraulic losses
4.1.4.1	Pressure loss in the straight pipe section
4.1.4.2	Pressure losses in pipe mouldings
4.1.4.3	Pressure losses at joints
4.1.4.4	Pressure losses in valves
4.1.4.5	Pressure surges
4.2	Strength calculations
4.2.1	Determining the pipe wall thickness
4.2.2	Determining moulding wall thicknesses
4.2.3	Proof of the stresses
4.2.4	Proof of the strains
4.3	Calculations for pipe laying
4.3.1	Establishing length changes
4.3.2	Compensating for length changes
4.3.3	Fixed-point loads
4.3.4	Pipe spans
4.3.5	Distances between pipe guides

1 Scope of application

The DVS 2210-1 technical code includes fundamentals for the design, calculation, prefabrication and assembly of industrial piping made of thermoplastics and laid above ground. Section 4 of the technical code deals with calculations and stipulates the mathematical relationships (equations) for these.

In order to support the user of the technical code with regard to the practical use of the equations, Working Group W 4.3 a has decided to offer a worked example.
The scope of application of the worked example is restricted to that of the DVS 2210-1 technical code. Since the material chosen for the example is PP-H (Type 1), the results cannot be directly applied to other thermoplastics.
As far as the input data is concerned, the relevant values for other thermoplastics can be input into the equations as shown in this worked example. The user is responsible not only for the correct input of the material data, the characteristic values and the loading parameters but also for the interpretation of requirements.

2 Remarks about utilisation

The calculation steps are represented using columns and lines. The chosen order, with the input data and substance values specified first, is an example of what a calculation for a pipe system should look like.
As far as it is possible, the calculation operations are carried out strictly according to the order of the equations given in DVS 2210-1. In the cases where the information about the application of the equations is not fully comprehensive, supplementary footnotes or remarks have been inserted. For clarity, these remarks are highlighted.

2.1 Significance of the columns

2.1.1 "Section" column

This refers to the sub-sections in Section 4 of the DVS 2210-1 technical code. If no numerical identification is specifie. thi column for a calculation line or an operation, the informatio from another source, which is inserted instead.

2.1.2 "Equation no." column

This refers to the equation number given in DVS 2, 0-1 and gives a direct relationship with the input values and unit
Remark: In order to avoid any input errors, it is oly recommended to carefully work through Section 4 the DV ${ }^{\circ} 210-1$ technical code.

2.1.3 "Index" column

This illustrates which operation is ref red t in he cal uation line concerned. The symbols are ex aine at t start of the calculation example.

2.1.4 "Subject" colum

The main column giv the cal ation th. as well as explanations and remarks. For Cra text is given in short form. If the description is not understo it is recommended to look up details under the section numbu oncerned in the DVS 2210-1 technical code.

Lines and pointers (arrows) have been inserted in some places at the right edge o column. These give an indication of where connections ex bety riables within a calculation section.

2.1.5 "Abbreviations" c amn

This reff to ${ }^{t}$ abbreviations for equation parameters, dimensions, thnir ar physical variables and similar items. The eaning f ach a reviation is explained in Section 11 of the D. 2210 al code.

1y ai viations that have not been explained in the VS 2210 chnical code but are used for supplementary callations a summarised in Section 2.2 below.
 liability can be accepted by the Deutscher Verband für Schw und verwanu- Verfahren e.V., and those participating in the drawing up of the document.

Remark: With regard to the abbreviations used in DVS 2210-1 and in the calculation example, it should be noted that European standardisation has resulted in various amendments to the nomenclature. For example, de is written for the outside diameter of a pipe instead of da and e for the wall thickness instead of s.
However, the main purpose of the worked example is to provide the user with assistance rather than ensure that it conforms to the latest nomenclature. It is left to the user of the DVS 2210-1 technical code and of the calculation example in Supplement 1 to revise the abbreviations as necessary.

2.1.6 "Input or result" and "Unit" columns

These columns are self-explanatory since they include the essential contents of the calculation. It is important for the user to pay attention to the units of the input variables when inputting the values into the equation or ancillary calculations concerned. Information about this is included in the remarks about the equations in the DVS 2210-1 technical code.

2.2 Abbreviations and their explanation

The calculation example includes abbreviations that have already been explained in Section 11 in the DVS 2210-1 technical code. New terms that have been added and cannot be explained by the text are listed below.

Symbol/ abbreviation empf	Unit	Designation
erf	-	Recommended variable
geo	-	Necessary variable
rechn	m	Geodetic
vorh	-	Computational variable
n	-	Existing variable
q	pieces	Number
Δ	N/m $(\mathrm{N} / \mathrm{mm})$	Specific weight loads
Indices	-	Difference
F		
LA		Guide
LD		Sinear distance
Z		Service life

3 Calculation example

Basis: DVS 2210-1 technical code (04/97 edition)

General data:

Pipe system: Piping laid above ground in a plant building Material: PP-H (Type 1)
Representation of the piping course: See the isometric drawing in the appendix

Operating loads:

Transported substance: Chemical waste water with low solvent proportions

Maximum operating temperature:	$\max \mathrm{T}_{\mathrm{B}}$	$40{ }^{\circ} \mathrm{C}$
Minimum operating temperature:	$\min T_{B}$	$20^{\circ} \mathrm{C}$
Computational operating temperature ${ }^{1)}$:	rechn T_{B}	$40{ }^{\circ} \mathrm{C}$
Computational temperature difference:	$\Delta \vartheta$	20 K
Computational service life ${ }^{2}$):	$t_{\text {LD }}$	25 years

Hydraulic data for the pipe system:
Feed pressure of the pumps: p
Feed volume per pump:
V_{z}
$\begin{array}{ll}\text { Number of pumps: } & n_{p} \\ \text { Flow volume of the pipe system: } & V^{\prime}\end{array}$

Geometrical data for the pipe system:
Pipe system length according to the isometric drawing in the appendix ${ }^{3}$)
Max. height difference between the pump and pipe axes:
Number of pipe bends in the main $n_{R F}$ line:
Number of supply lines (T pieces) nominal width of the supply lines
= DN 100:

Laying-specific data for the pipe system:
Distances be -en the pipe $\quad \mathrm{L}_{\mathrm{A}} \quad 2,000 \mathrm{~mm}$ supports in t buil
Pipe length w ee exp nsion
into the sowage trentm basin: 2,000 mm 49 m Pipe igth h compensation $\mathrm{L}_{\Delta} \quad 380 \mathrm{~m}$ usin J be as:

(assembly temperature):
Joining process:

Substance values:

Density of the transported substance (weight $\gamma=\rho \cdot \mathrm{g}\left[\mathrm{N} / \mathrm{m}^{3}\right]$): Kinematic viscosity of the trans$\begin{array}{lr}\rho & 1,000 \mathrm{~kg} / \mathrm{m}^{3} \\ v & 1.00 \mathrm{E}-06 \mathrm{~m}^{2} / \mathrm{s}\end{array}$

Heated tool but welding
ported substance:

Explanations:

1) Unless any information is provided about the loading cyo the maximum operating temperature must be \dagger count during the dimensioning
2) To define the characteristic material values
3) Including the additional length of U compensato since their dimensions must be determined by calc
